
N87-26552
PLASMA SIMULATION USING THE MASSIVELY

PARALLEL PROCESSOR

C. S. Lin, A. L. Thring, J. Koga, and R. W. Janetzke

Department of Space Sciences
Southwest Research Institute

San Antonio, Texas 78284

ABSTRACT

Two-dimensional electrostatic simulation codes using

the particle-in-cell model are developed on the Mas-

sively Parallel Processor (MPP). The conventional

plasma simulation procedure that computes electric

fields at particle positions by means of a gridded sys-
tem is found inefficient on the MPP. The MPP simula-

tion code is thus based on the gridless system in which

particles are assigned to processing elements and elec-
tric fields are computed directly via Discrete Fourier

Transform. Currently the gridless model on the MPP
in two dimensions is about nine times slower than the

gridded system on the CRAY X-MP without consid-

ering I/O time. However, the gridless system on the
MPP can be improved by incorporating a faster I/O

between the staging memory and Array Unit and a

more efficient procedure for taking floating point sums

over processing elements. Our initial results suggest

that the parallel processors have the potential for per-

forming large scale plasma simulations.

Keywords: plasma simulation, gridded system, grid-

less system, discrete Fourier transform

INTRODUCTION

Plasma simulations have been used extensively in

space physics and fusion energy research. Although

the basic physical principles of plasma physics are well
understood, the coupled physical phenomena are so

complex that analytical studies cannot be easily car-
ried out. With the advent of powerful supercomputers,

computer simulations have been used to gain insight

into physical phenomena.

One class of plasma simulation model is the particle-

in-cell (PIC) model, which treats the plasma at the

microscopic level by following the motion of a large
number of particles. We have been using a particle-in-
cell code to examine the instabilities of natural elec-

tron beams observed by the NASA Dynamics Explorer

satellite at high altitudes (> 10,000 km) (Ref. 1). The

simulation code typically uses over 400,000 simula-

tion particles and a 32 x 32 spatial grid in the two-

dimensional problem. It is difficult to improve the

spatial resolution with our available resources, because

a finer spatial grid would sharply increase the simu-

lated particle number and would require unreasonable

computer time. Likewise, three-dimensional simula-

tions are beyond our capability at the present time.

Buzbee (Ref. 2) examined the parallel properties of

particle codes for fusion studies and concluded that

a large percentage of plasma simulation programs can
be processed in parallel. We investigated potential im-

provement in two-dimensional and three-dimensional

plasma simulations by carrying out simulations on the

Massively Parallel Processor (MPP).

Particle-in-cell simulation models have been developed

for the parallel-architecture CHI computer by Dawson

et al. (Ref. 3). Their results indicate that the system
is cost-effective and offers a significant improvement

in performance. The CHI plasma simulation system

consists of six microprocessors: one array processor,
one macro-processor and four I/O processors. The ar-

ray processor does most of the calculations, the I/O

processors move data around and the macro-processor

handles scheduling and control. The parallel process-

ing among these processors accounts for most of the

performance advantage of the system. Buzbee (Ref.

2) has implemented a particle-in-cell code on two par-

allel processing devices-the UNIVAC 1100/84 and the
Denelcor Heterogeneous Element Processor (HEP); re-

sults from these two parallel processors demonstrated

that a large percentage of the total computation can

be done in parallel.

For these previous simulation models, the number of

parallel processors is less than eight. Plasma simu-
lation models have not been developed for a single-

instruction-stream and multiple-data-stream (SIMD)

processor like the MPP which has 16,384 arithmetic

processors configured as a 128 x 128 array. Without
knowing how to take advantage of the unique struc-

ture of the MPP, we first attempted to transform our
current particle code to run on the MPP. As might

be expected, we encountered difficulties in achiev-

ing good performance on the MPP using the particle
code optimized for the vector computer CRAY. Before

_'l_El)llN(_ PAGE BLANK NOT FILMED

185

discussing the difficulties and the new approach, we

present some background on the procedures of plasma
simulation models.

PARTICLE-IN-CELL MODEL

The particle-in-cell simulation code usually represents

the plasma as a large number of computational par-
ticles (usually greater than 100,000 particles for each

species) which move according to classical mechanics

in the self-consistent electromagnetic fields. The two-

dimensional spatial system is then divided into fixed

spatial cells or grids on which charge densities, poten-

tials, and fields are defined. For the purposes of il-

lustration, we will discuss only the electrostatic model

which has no electric current density. In its simplest
form, the procedures of the plasma simulation are:

. computation of the charge density at cell cen-
ters. A particle is assumed to have a finite size

comparable to the cell size to reduce numerical

noise. The charge density of each cell is calcu-

lated by accumulating each particle's contribu-

tion according to its occupied area in the cell.

. computation of electric fields from the charge
density using Poisson's equation. Poisson's

equation is usually solved by using a finite-
difference scheme or Fast Fourier Transform.

. interpolation of the electric forces on the parti-
cles from the electric fields at the nearest grid
points.

. application of the electric force to advance the

particle velocities and then positions in time us-

ing a simple leapfrog scheme.

The mathematical formulas of the electrostatic model

are briefly described here. The model consists of finite-

size particles, moving in a uniform and constant mag-
netic field/3 and interacting via a self-consistent elec-
tric field E. The equations of motion are

d_/dt = (qi/mi)(ff, + _ ×/_) (1)
c

dCi/dt = _ (2)

Here _, mi and qi are the velocity, mass, and charge of
the ith particle with the center position denoted by _.

The particles have a rectangular shape with a width
A. The charge density p is then

= q,s(e- e,) (3)
i

186

The shape function S(_'- _/) is 1 when both (z - zl)
and (y - Yl) are negative, and is 0 otherwise. Here z

and y are the two coordinatesof r. Poisson'sequation
is

V2¢ = -4rp(_ (4)

where ¢ is the electric potential. The electric field/_
is defined as

= (5)

We will focus on the numerical method of obtaining
the electric field /_, which is the key problem in im-

plementing plasma simulation models on parallel com-

puters. The algorithm of solving the electric field J_

from Equations (4) and (5) is usually based on Fourier

Transforms. For an infinite continuous system, the

Fourier Transforms of Equations (4) and (5) yield

E(g) = -i47rkS(k)p(k)/k 2 (6)

where E, S(]_') and p(]_) are the transformed quanti-

ties. The infinite continuous transform is defined here
as

p(/_) = / d+'p(e (7)
/.

./

An infinite continuous system has no grid; therefore,

the charge density p(k) becomes a summation over the
particle positions

p(g) = s(g) F, (8)

When the particle number is large, p(k) in Equation
(8) is generally too inefficient for computation. In-

stead a fast algorithm involving a gridded system and

Fast Fourier Transform is often used. Figure 1 shows

the flow chart of computing electric field/_(_) at the

location of particles _/ in a gridd_ed system. Because
the Fast Fourier Transform of p(k) is computed from

a small number of P(6) at the cell centers 6, the al-
gorithm is very efficient. The saving in computation

makes up for the extra steps in collecting cell charge

densities and interpolating the electric field at particle
positions.

Gridded System On the MPP

Plasma simulation models using grids have been tested
on several parallel computers and found to be feasible

(Refs. 2-3). Our first plasma simulation model on the

MPP therefore uses the gridded system. The program
assigns a particle to each processing element in the

MPP. Because the Array Unit has 16,384 processing
elements, the program updates positions and veloci-

GRIDLESS SYSTEM

r I (POSITION)

I°-I(EQUATION 81

1
p(k)

i,°o,,,o,,i
,L
E(k)

(EQUATION 91

E(r I)

GRIDDEO SYSTEM

r I (POj_TION)

I COLLECT

CHARGE
DENSITY
IN CELL

$

i FFT

$

EQUATION 6

$

I INVERSE
FFT

$

I INTERPOLATION J

$
E(r I)

Figure 1. Flow chart of computing electric fields in
the gridded and gridless systems.

ties of 16,384 particles at the same time. However,

we soon realized that collection of cell charge density

and interpolation of electric field at particle positions

cannot be computed in parallel or vectorized.

We investigated the possibility of performing serial

computations on the VAX, the frontend computer of

the MPP. The serial calculations involved in comput-

ing charge density at cell centers (Step 1) were com-
pleted on the average in 7 seconds on the MPP and

14.5 seconds on the VAX. A separate timing of the

number crunching portion on the MPP yields only

1.2 milliseconds, corresponding to a speed of approx-

imately 230 Mflops (millions of floating point opera-

tions). Therefore the MPP time of performing Step
1 is essentially I/O time between the staging memory

and the VAX. This approach is clearly not acceptable

because of the excessive I/O time.

The problem is somewhat alleviated on some super-
computers, which can perform fast serial computation

or do indirect indexing (Ref. 4). Some speedup in

charge collection on the MPP might be achieved by us-

ing an efficient sorting algorithm. However, the inter-

polation cannot be performed efficiently on the MPP

because it has only nearest-neighbor communication

and a small memory in the Array Unit. We finally

discarded the gridded system for the MPP and inves-

tigated the alternative approach described below.

GRIDLESS SYSTEM

The algorithm for the gridless system as shown in Fig-

ure 1 is much simpler than the gridded system. Equa-
tions (6) and (8) are used directly to compute the

Fourier Transform of electric field E(/_). No interpo-

lation is needed to obtain the electric field at parti-

cle positions. Instead, the electric field at the parti-

cle position is computed by using the inverse Discrete
Fourier Transform

E,(x,y) = dk_dkyE(k,,ky)e i(k'_'x+k''_)

= (9)
n31TI

Numerical evaluation of the integral in Equation (9) is

inefficient. The integral is thus converted to discrete

summations by assuming that the system is periodic

and has a length of L. The summation is truncated by

keeping only the low order terms; we have only kept
terms with n < 16 and m < 16 in two dimensions.

Since the right hand side of Equation (9) depends on
only the local parameters (particle position), the cal-

culation of/_(z, y) can be parallelized.

On the vector computer, the algorithm for the gridless

system is much slower than that for the gridded sys-

tem. Figure 2 shows the timing of the algorithms run
on the CRAY X-MP at the San Diego Supercomputer

Center. The algorithm of computing electric fields for

the gridless and gridded systems in one dimension is

shown in Figure 1. For particle number N = 16384,

the gridless system requires about 15 times more CPU
time than the gridded system to obtain comparable
results on the CRAY X-MP. The reason for this re-

markable difference in speed is simply that the gridless

system uses a Discrete Fourier Transform whereas the

gridded system uses a Fast Fourier Transform. The

number of operations to be performed for the gridless

system is proportional to NNk, where Nk is the num-

ber of Fourier modes. For the gridded system the num-

ber of operations is proportional to N 9 log Ng, where
N 9 is the number of cells and is usually taken to be

32 for a model. Since Nk is chosen to to be NJ2 and

N >> Ng, the gridless system has many more arith-
metic operations than the gridded system.

187

1-D ELECTRIC FIELD

CALCULATION

1.2
GRIDLESS SYSTEM

(CRAY X-MP)

1.0

*'_ 0.8
CO

"0
¢=
0
tJ
@ 0.6W

UJ

m

I--
0.4

GRIDLESS SYSTEM

(MPP)

0.2

0.0
16384

GRIDDED SYSTEM
(CRAY X-MP)

I I

32768 49152

PARTICLE NUMBER

Figure 2. Algorithm timing of electric field calcula-

tions in one dimension.

We next discuss the algorithm timing for the grid-

less system run on the MPP. The MPP CPU time we

present includes only processing times of the Array

Unit for arithmetic operations and the Main Control

Unit for controlling I/O. The I/O time between the

staging memory and the Array Unit is not yet included

in our algorithm timing because we have not, yet opti-

mized the I/O and learned how to determine the I/O

time accurately. It appears that the I/O time is many

times the MPP CPU time.

In CPU time required to compute electric field in the

one-dimensional gridless system, the MPP is compa-

rable to the CRAY X-MP in speed (Figure 2). The

MPP is more efficient than the CRAY X-MP for the

gridless system because it operates on 16,384 particles

simultaneously and thus the number of operations is

proportional to (N/16384)Nk. Note that the gridless

system algorithm is highly parallelized on the MPP.

188

We next compare the timing of computing electric field

in two dimensions between the gridless system on the

MPP and the gridded system on the CRAY X-MP

(Figure 3). The MPP is about 24 times slower than

the CRAY X-MP in the case of 16,384 particles. When

N = 3 x 16384, the MPP is about 16 times slower than

the CRAY X-MP.

10
2-D SIMULATION

|
F-

0.1

O.Ol I I l
16384 32768 40152

PARTICLE NUMBER

Figure 3. Timing comparison of two-dimensional elec-

trostatic simulation codes between the CRAY X-MP

and the MPP. Both the gridded and gridless systems

are timed on the CRAY X-MP. Only the gridless sys-

tem is timed on the MPP.

In breaking down the CPU timing on the MPP, we

found that the MPP spends about 60% CPU time for

N = 16384 and 30% CPU time for N = 3 x 16384 in

obtaining the floating point reduction sum, which is

a summation taken over 16,384 processing elements.

The amount of time spent on reduction sums is ex-

cessive since the number of reduction sums is quite

small, only 16 for one dimension and 256 for two di-

mensions. We were able to determine that the routine

in the MPP library for summing 32 bit floating point

numbers over the processing elements had not been op-

timized. Specifically, a summation of a 32 bit parallel

array took about 2.04 milliseconds, which is about 55

times the CPU time for addition of two 32 bit floating

point numbers.

The plasma simulation procedure outlined in the

particle-in-cell model includes advancing particle posi-

tions and velocities in addition to solving the electric

field. Particle positions are checked to determine if

particles advance outside the system boundary. The

periodic boundary condition is used to adjust the po-

sitions of particles advanced outside the boundary

x= x-L ifm>L (i0)

and

y= y- L if y > i (11)

The procedure of implementing the boundary condi-

tion cannot be fully vectorized on the CRAY X-MP.
Furthermore, the MPP has an advantage over CRAY

X-MP because it can advance 16,384 particles simulta-

neously instead of 64 particles as processed by CRAY
X-MP.

Figure 3 presents the timing for the two-dimensional

electrostatic simulation procedure outlined in the

particle-in-cell model. The CRAY X-MP uses 0.2 sec-
onds CPU time for simulating a plasma of 16,384 par-

ticles, about three times the CPU time needed to com-

pute the electric field. Thus the CRAY X-MP spends

about one-third of the CPU time on Steps 1-3 and

two-thirds of the CPU time on Step 4. In contrast,

the additional CPU time needed for Step 4 on the

MPP is negligible (_, 1 millisecond).

For N = 16384, the timing ratio of the two-
dimensional electrostatic PIC code is about nine. The

ratio remains constant when N increases to 3 x 16384.

DISCUSSION

The objectiveof thisstudy isto develop an efficient

MPP program to simulate beam plasma interactions
in three dimensions. The initial results presented here

show some difficulties in reaching this goal. The effi-

cient method typically employed on the CRAY X-MP

simulates plasmas in a gridded system, first computing

electric fields at the grid points via Fast Fourier Trans-

forms and then interpolating electric fields at particle

positions. Because the MPP has only nearest-neighbor

communication and a limited memory in the Array

Unit, the gridded system is awkward and very slow

on the MPP. We have thus adopted a gridless system

that assigns a particle to a processing element and
computes electric fields at particle positions directly

via Discrete Fourier Transform. Currently, the grid-
less model in two dimensions on the MPP is about nine

times slower than the gridded system on the CRAY X-

MP. Improvements in the CPU times for the MPP are

still possible, since our MPP programs have not been
fully optimized. In three-dimensional simulations, the

MPP is expected to be much slower than the CRAY
X-MP.

It is obvious that the speedup factor for the gridless
model on the MPP relative to the CRAY X-MP is

large since the gridless model is highly parallelized.

Indeed, when the performance of the one-dimensional

gridless system on both computers is compared, the

MPP is as fast as the CRAY X-MP (see Figure 2).

However, a much more efficient method using the grid-
ded system can be adapted on the CRAY X-MP but
not the MPP.

So far we have only tested the basic ideas of the

gridless simulation model and shown that the unique
structure of the MPP is suitable for processing this

model. We have not yet completed the program for

conducting plasma simulations. One critical area un-

resolved is the transfer of diagnosis quantities from the

MPP to the VAX for post processing. In order to min-

imize the total run time, the program being designed

will process I/O between the staging memory and the

VAX in parallel with the Array Unit (Figure 4). The

VAX MPP

I

I ['8TART I
!

!

PROGRAM _ I

INWIALIZAT_NI/_G_/I

L,END J_ YES

I F°"c"I

YES

I
i/

!

DIAGNOSTIC8

Figure 4. Program design of the plasma simulation
code

189

simulation diagnosis usually needs to examine only a
portion of particles for about every hundred time steps

or longer. We estimate that the MPP uses about 2.5

seconds to transfer positions and velocities of 16,384

particles. Simulating 16,384 particles in one hundred

time steps, the Array Unit will spend about 200 sec-

onds, which is more than enough time to output the

diagnosis results. The program will check to see that

the I/O is completed before computations continue.

These features of our program should ensure that the
I/O time between the staging memory and the VAX

will not contribute significantly to the total run time.

We have compared only the CPU time between the

MPP and the CRAY X-MP. As mentioned before, the

I/O time between the staging memory and the Array
Unit is not yet timed. Since the I/O is very slow, the

MPP performance is misleading without considering

the I/O. By simulating only a small number of par-

ticles (N < 49152), we do not need to use staging
memory. Plasma simulation for realistic problems will

have many more particles than were used here. Be-

cause the Array Unit has a very limited memory (32

floating point words), it is necessary to transfer tempo-
rary variables to the staging memory. Our preliminary

estimates indicate that tansferring a parallel array be-

tween the staging memory and the Array Unit takes

from 35 to 200 milliseconds. The I/O time is very

slow and highly variable because the I/O initiated by
the standard MPP routines is controlled by the fron-

tend VAX computer. Recently we learned that the

I/O time can be reduced by using efficient routines

without involving the VAX. But the number of I/O

operations for using the staging memory as auxilliary

memory for the Array Unit is estimated to be at least

3000 for N = 3 x 16384. Unless the I/O speed is im-

proved significantly, we do not believe that the MPP
can compete with the CRAY computers in speed.

Another difficulty with the plasma simulation on the

MPP is the floating point reduction sum over 16,384
processing elements. We were unable to investigate an

efficient algorithm for computing the reduction sum,

but were told that the current algorithm can be im-

proved considerably (private communication with E.

Seiler).

Having mentioned the disadvantage of the MPP, we

feel it is only fair to discuss some advantages of the

gridless model on the MPP. Implementation of the

simulation procedure is simplified by assigning a par-

ticle to a processing element (see flow chart in Figure

1). Without using the grid, the simulation code also

avoids numerical noises due to the grid. Finally, little
effort is needed to extend the code to three dimensions.

190

Tile experience of developing plasma sinmlation codes

on the MPP has proved to be more challenging than

anticipated. Our original attempt, implementing the

conventional particle-in-cell code on the MPP, was

fruitless. Because we assigned particles to process-

ing elements, we encountered the difficulty of indirect

addressing in the interpretation of forces at particle

posistions from the nearest-neighbor grid points. The

MPP currently cannot address indirectly other pro-
cessing elements. Indirect addressing can be avoided

in the gridded system if the cells are mapped to pro-

cessing elements (Ref. 5).

We have investigated the gridless system approach
that uses extensive parallel computation and mini-

mal communication among parallel processors. Our

results so far indicate that the MPP, with improve-

ments in both hardware and software, might be ac-

ceptable for large scale scientific computation. The

needed improvements include a faster I/O between the
staging memory and the Array Unit, more memory in

the Array Unit, and a more efficient procedure for the

reduction sum. With these improvements the gridless

system of particle simulations has the potential to be a

useful and cost-effective method for simulating plasma
phenomena on parallel computers.

ACKNOWLEDGEMENT

We thank E. Seller of the MPP User Support Office
for his valuable assistance in learning to use the MPP.

We acknowledge San Diego Supercomputer Center
for the use of the CRAY X-MP. We also acknowl-

edge the joint grant of Digital Equipment Corpotion

and National Science Foundation for providing a Mi-

croVAX II, which is used for get access to the CRAY
and the MPP. This work is supported by Southwest

Research Institute Internal Research Program, NSF

grant ATM-8405536, and NASA contract No. NAS8-
32488.

REFERENCES

.

.

.

Lin, C. S., D. Winske, and R. L. Tokar, "Sim-
ulation of the Electron Acoustic Instability in

the Polar Cusp," J. Geophys. Res., 1985, 90,

pp.8269-8280.

Buzbee, B. L., "Plasma Simulation and Fusion

Calculation," High-Speed Computation, ed. by

J. S. Kowalik, Springer-Verlag, 1984, pp.417-
424.

Dawson, J. M., R. W. Huff, and C. C. Wu,
"Plasma Simulation on the UCLA CHI Com-

puter System,"(Proceedingof the National
ComputerConference)1978,pp.395-407.

4. Nishiguchi, A., S. Orii, T. Yabe, "Vector Calcu-
lation of Particle Code," Journal of Computa-

tional Physics, 1985, 61, pp. 519-522.

° Gledhill, I. M. A., and L. R. O. Storey, "Particle

Simulation of plasmas on the Massively Paral-

lel Processor," (Proceedings of the First Sympo-
sium on the Frontier of Massively Parallel Scien-

tific Computation) NASA/Goggard Space Flight

Center September 24-25, published in December
1986.

191

